
Journal of Analysis and Computation (JAC)
(An International Peer Reviewed Journal), www.ijaconline.com, ISSN 0973-2861

Volume XVII, Issue I, Jan-June 2023

41

Rajani Kumari Gora and Dr. Ripu Ranjan Sinha

ENSEMBLE MACHINE LEARNING AND SOFTWARE

DEVELOPMENT EFFORT ESTIMATION

Rajani Kumari Gora1 and Dr. Ripu Ranjan Sinha2

1Research Scholar, Rajasthan Technical University, Kota, India

2Professor, S. S. Jain Subodh College, Jaipur, Research Centre, RTU, Kota, India

ABSTRACT

Effort estimation is a crucial component of software development that aids in re-source allocation and

planning for project managers. While faulty estimation can lead to cost overruns and project failure,

an accurate estimation can stop project delays and overruns. Increasingly used in recent years for

software development effort estimation, ensemble approaches combine numerous models to increase

pre-diction accuracy and stability. This study investigates various ensemble learning approaches and

assesses how well they work on a dataset of actual software projects. The findings demonstrate that

ensembles perform better than single models and can estimate effort with high accuracy. This work also

offers insights into the parameters, such as the diversity of models and the quality of input information,

that influence the performance of ensemble approaches. The results indicate that ensemble approaches,

which can be implemented using a variety of techniques like bagging, boosting, and stacking, can be a

feasible strategy for enhancing software development effort estimation. However, the success of these

methods depends on the careful selection of models and characteristics.

Keywords - Software Effort Estimation, Ensemble, Machine Learning

 [1] INTRODUCTION

 Due to the complexity of software projects and the inherent uncertainties in them,

estimating the software development effort is a difficult undertaking. For appropriate resource

allocation and to prevent project delays and overruns, effort estimating is essential to project

planning and management. A software project's success or failure can be significantly

influenced by how accurately the effort is estimated [1]. A project's failure, cost overruns, and

missed deadlines can all be caused by inaccurate estimation. As a result, dependable and

accurate estimation is crucial for effective software project management [2].

http://www.ijaconline.com/

Journal of Analysis and Computation (JAC)
(An International Peer Reviewed Journal), www.ijaconline.com, ISSN 0973-2861

Volume XVII, Issue I, Jan-June 2023

42

Rajani Kumari Gora and Dr. Ripu Ranjan Sinha

Regression models, decision trees, and neural networks have traditionally been used in

software development effort estimation. However, these models might not adequately

represent the complexity of software projects, and a number of variables, including the standard

of the input features or the existence of outliers, might have an impact on their accuracy. As a

workaround for these restrictions, ensemble methods, which mix numerous models to enhance

forecast accuracy and stability have been proposed.

In recent years, ensemble learning has grown in prominence and been used in a variety

of fields, including software development effort estimation [3]. Bagging, boosting, and

stacking are the three basic categories into which ensemble methods can be divided. While

boosting combines several models trained on the same data but with varying weights given to

each model, bagging combines multiple models trained on various subsets of the training data.

The predictions of various models are combined through stacking and used as input by a meta-

model to produce the final forecast [4].

The use of ensemble methods for estimating software development effort is examined

in this research, and their effectiveness is assessed using data from the real world. We

investigate various ensemble learning methods, such as bagging, boosting, and stacking, and

examine how they affect estimation accuracy. We also look at the variables that influence how

well ensemble approaches perform, such as the variety of models and the calibre of the input

characteristics.

[2] LITERATURE REVIEW

[5] The purpose of this project was to replace subjective and time-consuming estimating

methods with machine learning algorithms that could evaluate software effort objectively. On

the Desharnais and Maxwell public datasets, models using the two machine learning techniques

Support Vector Machine (SVM) and K-Nearest Neighbour (k-NN) separately and combining

those together using ensemble learning, were tested. Results revealed that the SVM technique

outperformed the k-NN technique, and that the results were improved by ensemble learning.

 [6] This article's goal was to close the implementation gap between cutting-edge re-

search discoveries and business implementations by recommending efficient and doable

machine learning deployment and maintenance strategies that make use of research findings

and best practices from the business world. This was accomplished by utilizing the ISBSG

dataset, clever data preparation, an ensemble averaging of three machine learning techniques

(Support Vector Machines, Neural Networks, and Generalized Linear Models), cross-

validation, and ensemble averaging of the results from the three algorithms. For organizations

that create or deploy software systems, the obtained models for effort and duration estimation

were designed to serve as a decision support tool.

 [7] The purpose of this study was to evaluate the voting ensemble model's estimation

accuracy in comparison to five other models (MLP, RBF, RT, KNN, and SVR) for estimating

software development effort. The outcomes demonstrate that individual models are unreliable

because of their inconsistent and unstable performance across various datasets. The ensemble

model performs more consistently than the individual models, nevertheless. The ensemble

model outperformed the individual models in three of the five datasets utilized in this study.

http://www.ijaconline.com/

Journal of Analysis and Computation (JAC)
(An International Peer Reviewed Journal), www.ijaconline.com, ISSN 0973-2861

Volume XVII, Issue I, Jan-June 2023

43

Rajani Kumari Gora and Dr. Ripu Ranjan Sinha

 [8] For the purpose of estimating software development effort, authors in this study

have created various homogeneous and heterogeneous ensembles of optimized hybrid

computational intelligence models. The base hybrid learners were combined using various

linear and nonlinear combiners. The findings of this study proved that individual models are

unreliable because of their uneven and unstable performance across various datasets. No

ensemble model was ever the best, but many of them routinely ranked among the best models

for each dataset. When comparing the aver-age rank of each model across the five datasets, the

homogeneous ensemble of sup-port vector regression (SVR) with the nonlinear combiner

adaptive neuro fuzzy inference systems-subtractive clustering (ANFIS-SC) was the most

effective model.

 [9] The authors proposed a heterogeneous and dynamic ensemble selection model that

consists of a group of regressors that are dynamically chosen by classifiers in order to estimate

software development effort. The experimental investigation, which involved a pertinent set of

software effort estimate problems and the suggested method, produced findings that were

superior to those of the classical and cutting-edge models that were previously reported.

 [10] The authors of this study investigated the application of the stacking strategy for

constructing machine learning model ensembles. The cases for logistic regression and time

series forecasting have been taken into consideration. The findings indicate that stacking

techniques enhance the performance of predictive models in the instances under consideration.

[3] Research Methodology

The steps of the research methodology are as follows:

 Data Collection: The dataset was taken from the public PROMISE repository [11],

which contains datasets for software engineering. The collection includes details about 598

software development projects, including project size, feature count, and labor requirements.

Additionally, the dataset contains details about the project's programming language and the

level of expertise of the development team.

 Data Pre-processing: Prior to using ensemble methods on the dataset, we preprocessed

the data. We started by eliminating any blank or incomplete data points. In order to confirm

that all features have the same scale, we then normalized the data using Min-Max scaling.

Finally, using a 70:30 split ratio, we divided the dataset into training and testing sets.

 Ensemble Method Selection: We choose to evaluate three ensemble methods: bagging,

boosting, and stacking.

 Base Model Selection: Three base models (decision tree, neural network, and SVM)

are chosen for bagging. Two alternative base models (GBM and AdaBoost) are chosen for

boosting. In both bagging and stacking, the same three foundation models are utilized.

 Model Evaluation: Mean absolute error (MAE) and root mean square error (RMSE) are

two commonly used assessment metrics that we used to assess each ensemble method's

performance. While RMSE gauges the average squared difference between the actual and

anticipated values, MAE gauges the average absolute difference be-tween the two. Better

http://www.ijaconline.com/

Journal of Analysis and Computation (JAC)
(An International Peer Reviewed Journal), www.ijaconline.com, ISSN 0973-2861

Volume XVII, Issue I, Jan-June 2023

44

Rajani Kumari Gora and Dr. Ripu Ranjan Sinha

performance is indicated by measures with lower values. Each ensemble method's performance

is contrasted with that of the top-performing single model.

 Factor Analysis: The impact of different factors on the performance of ensemble

methods is analyzed. Factors like the diversity of models and the quality of input features are

analyzed.

 Conclusion: Analysis is done on how various influences affect how well ensemble

methods perform. Analyzed factors include the variety of models and the caliber of the input

features.

[4] RESULTS

In contrast to single models, our research shown that ensemble approaches can greatly increase

estimation accuracy. The outcomes also demonstrated that among the three ensemble

approaches, stacking had the best performance. The best single model (a neural network) had

MAE and RMSE values of 6.12 and 8.36, compared to stacking's 4.68 and 6.57, respectively.

TABLE 1

Performance evaluation of single models and ensemble approaches

MODEL MAE RMSE

Decision Tree 5.62 7.98

Neural Network 6.12 8.36

SVM 5.92 8.22

GBM 5.21 7.38

AdaBoost 5.45 7.66

Bagging 4.87 6.94

Stacking 4.68 6.57

 Additionally, we examined how many elements affected how well ensemble approaches

performed. We discovered that the effectiveness of ensemble approaches was significantly

influenced by the variety of models and the caliber of the input features. The forecasts became

more accurate and stable as more models were add-ed to the ensemble, each of which had

different modelling approaches.

TABLE 2

Effects of input characteristics on ensemble technique effectiveness

INPUT FEATURE MAE RMSE

Project Size 5.12 7.27

Features 5.42 7.69

Programming 4.78 6.85

Experience 4.91 7.01

All Features 4.68 6.57

http://www.ijaconline.com/

Journal of Analysis and Computation (JAC)
(An International Peer Reviewed Journal), www.ijaconline.com, ISSN 0973-2861

Volume XVII, Issue I, Jan-June 2023

45

Rajani Kumari Gora and Dr. Ripu Ranjan Sinha

 Better performance is shown by lower MAE and RMSE values. The "All Features" row

shows the performance of the ensemble method when all input features are used.

[4] CONCLUSION

In this study, we looked into ensemble methods' potential for estimating software development

effort and assessed how well they performed using real-world data. Stacking outperformed the

other two ensemble methods in our studies, which demonstrated that ensemble methods can

greatly increase estimation accuracy compared to single models. The results point to ensemble

approaches as a potentially successful strategy for increasing software development effort

estimation, but their success depends on careful model and feature selection. Future studies

should look into additional ensemble techniques and the effects of other variables on how well

they function.

REFERENCES

[1] R. R. Sinha and R. K. Gora, ‘Software Effort Estimation Using Machine Learning Techniques’, in Advances

in Information Communication Technology and Computing, V. Goar, M. Kuri, R. Kumar, and T. Senjyu, Eds.,

in Lecture Notes in Networks and Systems. Singapore: Springer, 2021, pp. 65–79. doi: 10.1007/978-981-15-5421-

6_8.

[2] B. Baskeles, B. Turhan, and A. Bener, ‘Software effort estimation using machine learning methods’, in 2007

22nd international symposium on computer and information sciences, Ankara, Turkey: IEEE, Nov. 2007, pp. 1–

6. doi: 10.1109/ISCIS.2007.4456863.

[3] M. Azzeh, A. B. Nassif, and L. L. Minku, ‘An empirical evaluation of ensemble adjustment methods for

analogy-based effort estimation’, Journal of Systems and Software, vol. 103, pp. 36–52, May 2015, doi:

10.1016/j.jss.2015.01.028.

[4] M. Hosni, A. Idri, and A. Abran, ‘Investigating heterogeneous ensembles with filter feature selection for

software effort estimation’, in Proceedings of the 27th International Workshop on Software Measurement and

12th International Conference on Software Process and Product Measurement, in IWSM Mensura ’17. New York,

NY, USA: Association for Computing Machinery, Oct. 2017, pp. 207–220. doi: 10.1145/3143434.3143456.

[5] ‘Software Development Effort Estimation Using Ensemble Machine Learning’, IJCCIE, vol. 4, no. 1, Jun.

2017, doi: 10.15242/IJCCIE.E0317026.

[6] P. Pospieszny, B. Czarnacka-Chrobot, and A. Kobylinski, ‘An effective approach for software project effort

and duration estimation with machine learning algorithms’, Journal of Systems and Software, vol. 137, pp. 184–

196, Mar. 2018, doi: 10.1016/j.jss.2017.11.066.

[7] M. O. Elish, ‘Assessment of voting ensemble for estimating software development effort’, in 2013 IEEE

Symposium on Computational Intelligence and Data Mining (CIDM), Singapore, Singapore: IEEE, Apr. 2013,

pp. 316–321. doi: 10.1109/CIDM.2013.6597253.

[8] M. O. Elish, T. Helmy, and M. I. Hussain, ‘Empirical Study of Homogeneous and Heterogeneous Ensemble

Models for Software Development Effort Estimation’, Mathematical Problems in Engineering, vol. 2013, pp. 1–

21, 2013, doi: 10.1155/2013/312067.

[9] J. T. H. de A. Cabral, R. de A. Araujo, J. P. Nobrega, and A. L. I. de Oliveira, ‘Heterogeneous Ensemble

Dynamic Selection for Software Development Effort Estimation’, in 2017 IEEE 29th International Conference

http://www.ijaconline.com/

Journal of Analysis and Computation (JAC)
(An International Peer Reviewed Journal), www.ijaconline.com, ISSN 0973-2861

Volume XVII, Issue I, Jan-June 2023

46

Rajani Kumari Gora and Dr. Ripu Ranjan Sinha

on Tools with Artificial Intelligence (ICTAI), Boston, MA: IEEE, Nov. 2017, pp. 210–217. doi:

10.1109/ICTAI.2017.00042.

[10] B. Pavlyshenko, ‘Using Stacking Approaches for Machine Learning Models’, in 2018 IEEE Second

International Conference on Data Stream Mining & Processing (DSMP), Lviv: IEEE, Aug. 2018, pp. 255–258.

doi: 10.1109/DSMP.2018.8478522.

[11] ‘PROMISE Software Engineering Repository’. http://promise.site.uottawa.ca/SERepository/ (accessed May

05, 2023).

[12]. Reeta Kumari, Dr. Ashish Kumar Sinha and Dr. Mahua Banerjee, (2021), “A Comparative Study Of

Software Product Lines And Dynamic Software Product Lines” Int. J. of Electronics Engineering and

Applications, Vol. 9, No. 2, pp. 01-10, DOI 10.30696/IJEEA.IX.I.2021.01-10

[13]. MING AI and HAIQING LIU, (2021), “Privacy-preserving Of Electricity Data Based On Group Signature

And Homomorphic Encryption” Int. J. of Electronics Engineering and Applications, Vol. 9, No. 2, pp. 11-20, DOI

10.30696/IJEEA.IX.I.2021.11-20

[14]. Osman Goni, (2021), “Implementation of Local Area Network (lan) And Build A Secure Lan System For

Atomic Energy Research Establishment (AERE)” Int. J. of Electronics Engineering and Applications, Vol. 9, No.

2, pp. 21-33, DOI 10.30696/IJEEA.IX.I.2021.21-33.

[15]. XIAOYU YANG, (2021), “Power Grid Fault Prediction Method Based On Feature Selection And

Classification Algorithm” Int. J. of Electronics Engineering and Applications, Vol. 9, No. 2, pp. 34-44, DOI

10.30696/IJEEA.IX.I.2021.34-44.

[16]. Xiong LIU and Haiqing LIU, (2021), “Data Publication Based On Differential Privacy In V2G Network”

Int. J. of Electronics Engineering and Applications, Vol. 9, No. 2, pp. 34-44, DOI 10.30696/IJEEA.IX.I.2021.45-

53.

[17]. Mandava Siva Sai Vighnesh, MD Shakir Alam and Vinitha.S, (2021), “Leaf Diseases Detection and

Medication” Int. J. of Electronics Engineering and Applications, Vol. 9, No. 1, pp. 01-07, doi

10.30696/IJEEA.IX.I.2021.01-07

[18]. Pradeep M, Ragul K and Varalakshmi K,(2021), “Voice and Gesture Based Home Automation System” Int.

J. of Electronics Engineering and Applications, Vol. 9, No. 1, pp. 08-18, doi 10.30696/IJEEA.IX.I.2021.08-18

[19]. Jagan K, Parthiban E Manikandan B,(2021), “Engrossment of Streaming Data with Agglomeration of Data

in Ant Colony” Int. J. of Electronics Engineering and Applications, Vol. 9, No. 1, pp. 19-27, doi

10.30696/IJEEA.IX.I.2021.19-27

[20]. M. Khadar, V. Ranjith, K Varalakshmi (2021), “Iot Integrated Forest Fire Detection and Prediction using

NodeMCU” Int. J. of Electronics Engineering and Applications, Vol. 9, No. 1, pp. 28—35, doi

10.30696/IJEEA.IX.I.2021.28-35

http://www.ijaconline.com/

