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ABSTRACT 
 

Effort estimation is a crucial component of software development that aids in re-source allocation and 

planning for project managers. While faulty estimation can lead to cost overruns and project failure, 

an accurate estimation can stop project delays and overruns. Increasingly used in recent years for 

software development effort estimation, ensemble approaches combine numerous models to increase 

pre-diction accuracy and stability. This study investigates various ensemble learning approaches and 

assesses how well they work on a dataset of actual software projects. The findings demonstrate that 

ensembles perform better than single models and can estimate effort with high accuracy. This work also 

offers insights into the parameters, such as the diversity of models and the quality of input information, 

that influence the performance of ensemble approaches. The results indicate that ensemble approaches, 

which can be implemented using a variety of techniques like bagging, boosting, and stacking, can be a 

feasible strategy for enhancing software development effort estimation. However, the success of these 

methods depends on the careful selection of models and characteristics. 
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 [1] INTRODUCTION 

 

 Due to the complexity of software projects and the inherent uncertainties in them, 

estimating the software development effort is a difficult undertaking. For appropriate resource 

allocation and to prevent project delays and overruns, effort estimating is essential to project 

planning and management. A software project's success or failure can be significantly 

influenced by how accurately the effort is estimated [1]. A project's failure, cost overruns, and 

missed deadlines can all be caused by inaccurate estimation. As a result, dependable and 

accurate estimation is crucial for effective software project management [2]. 
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Regression models, decision trees, and neural networks have traditionally been used in 

software development effort estimation. However, these models might not adequately 

represent the complexity of software projects, and a number of variables, including the standard 

of the input features or the existence of outliers, might have an impact on their accuracy. As a 

workaround for these restrictions, ensemble methods, which mix numerous models to enhance 

forecast accuracy and stability have been proposed. 

 

In recent years, ensemble learning has grown in prominence and been used in a variety 

of fields, including software development effort estimation [3]. Bagging, boosting, and 

stacking are the three basic categories into which ensemble methods can be divided. While 

boosting combines several models trained on the same data but with varying weights given to 

each model, bagging combines multiple models trained on various subsets of the training data. 

The predictions of various models are combined through stacking and used as input by a meta-

model to produce the final forecast [4]. 

 

The use of ensemble methods for estimating software development effort is examined 

in this research, and their effectiveness is assessed using data from the real world. We 

investigate various ensemble learning methods, such as bagging, boosting, and stacking, and 

examine how they affect estimation accuracy. We also look at the variables that influence how 

well ensemble approaches perform, such as the variety of models and the calibre of the input 

characteristics. 

 

[2] LITERATURE REVIEW 

 

[5] The purpose of this project was to replace subjective and time-consuming estimating 

methods with machine learning algorithms that could evaluate software effort objectively. On 

the Desharnais and Maxwell public datasets, models using the two machine learning techniques 

Support Vector Machine (SVM) and K-Nearest Neighbour (k-NN) separately and combining 

those together using ensemble learning, were tested. Results revealed that the SVM technique 

outperformed the k-NN technique, and that the results were improved by ensemble learning. 

 

 [6] This article's goal was to close the implementation gap between cutting-edge re-

search discoveries and business implementations by recommending efficient and doable 

machine learning deployment and maintenance strategies that make use of research findings 

and best practices from the business world. This was accomplished by utilizing the ISBSG 

dataset, clever data preparation, an ensemble averaging of three machine learning techniques 

(Support Vector Machines, Neural Networks, and Generalized Linear Models), cross-

validation, and ensemble averaging of the results from the three algorithms. For organizations 

that create or deploy software systems, the obtained models for effort and duration estimation 

were designed to serve as a decision support tool. 

 

 [7] The purpose of this study was to evaluate the voting ensemble model's estimation 

accuracy in comparison to five other models (MLP, RBF, RT, KNN, and SVR) for estimating 

software development effort. The outcomes demonstrate that individual models are unreliable 

because of their inconsistent and unstable performance across various datasets. The ensemble 

model performs more consistently than the individual models, nevertheless. The ensemble 

model outperformed the individual models in three of the five datasets utilized in this study. 
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 [8] For the purpose of estimating software development effort, authors in this study 

have created various homogeneous and heterogeneous ensembles of optimized hybrid 

computational intelligence models. The base hybrid learners were combined using various 

linear and nonlinear combiners. The findings of this study proved that individual models are 

unreliable because of their uneven and unstable performance across various datasets. No 

ensemble model was ever the best, but many of them routinely ranked among the best models 

for each dataset. When comparing the aver-age rank of each model across the five datasets, the 

homogeneous ensemble of sup-port vector regression (SVR) with the nonlinear combiner 

adaptive neuro fuzzy inference systems-subtractive clustering (ANFIS-SC) was the most 

effective model. 

 

 [9] The authors proposed a heterogeneous and dynamic ensemble selection model that 

consists of a group of regressors that are dynamically chosen by classifiers in order to estimate 

software development effort. The experimental investigation, which involved a pertinent set of 

software effort estimate problems and the suggested method, produced findings that were 

superior to those of the classical and cutting-edge models that were previously reported. 

 

 [10] The authors of this study investigated the application of the stacking strategy for 

constructing machine learning model ensembles. The cases for logistic regression and time 

series forecasting have been taken into consideration. The findings indicate that stacking 

techniques enhance the performance of predictive models in the instances under consideration. 

 

[3] Research Methodology 

 

The steps of the research methodology are as follows: 

 

 Data Collection: The dataset was taken from the public PROMISE repository [11], 

which contains datasets for software engineering. The collection includes details about 598 

software development projects, including project size, feature count, and labor requirements. 

Additionally, the dataset contains details about the project's programming language and the 

level of expertise of the development team. 

 

 Data Pre-processing: Prior to using ensemble methods on the dataset, we preprocessed 

the data. We started by eliminating any blank or incomplete data points. In order to confirm 

that all features have the same scale, we then normalized the data using Min-Max scaling. 

Finally, using a 70:30 split ratio, we divided the dataset into training and testing sets. 

 

 Ensemble Method Selection: We choose to evaluate three ensemble methods: bagging, 

boosting, and stacking. 

 

 Base Model Selection: Three base models (decision tree, neural network, and SVM) 

are chosen for bagging. Two alternative base models (GBM and AdaBoost) are chosen for 

boosting. In both bagging and stacking, the same three foundation models are utilized. 

 

 Model Evaluation: Mean absolute error (MAE) and root mean square error (RMSE) are 

two commonly used assessment metrics that we used to assess each ensemble method's 

performance. While RMSE gauges the average squared difference between the actual and 

anticipated values, MAE gauges the average absolute difference be-tween the two. Better 
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performance is indicated by measures with lower values. Each ensemble method's performance 

is contrasted with that of the top-performing single model. 

 

 Factor Analysis: The impact of different factors on the performance of ensemble 

methods is analyzed. Factors like the diversity of models and the quality of input features are 

analyzed. 

 

 Conclusion: Analysis is done on how various influences affect how well ensemble 

methods perform. Analyzed factors include the variety of models and the caliber of the input 

features. 

 

[4] RESULTS 

 

In contrast to single models, our research shown that ensemble approaches can greatly increase 

estimation accuracy. The outcomes also demonstrated that among the three ensemble 

approaches, stacking had the best performance. The best single model (a neural network) had 

MAE and RMSE values of 6.12 and 8.36, compared to stacking's 4.68 and 6.57, respectively. 

 

TABLE 1 

Performance evaluation of single models and ensemble approaches 

 

MODEL MAE RMSE 

Decision Tree 5.62 7.98 

Neural Network 6.12 8.36 

SVM 5.92 8.22 

GBM 5.21 7.38 

AdaBoost 5.45 7.66 

Bagging 4.87 6.94 

Stacking 4.68 6.57 

 

 Additionally, we examined how many elements affected how well ensemble approaches 

performed. We discovered that the effectiveness of ensemble approaches was significantly 

influenced by the variety of models and the caliber of the input features. The forecasts became 

more accurate and stable as more models were add-ed to the ensemble, each of which had 

different modelling approaches. 

 

TABLE 2 

Effects of input characteristics on ensemble technique effectiveness 

 

INPUT FEATURE   MAE RMSE 

Project Size  5.12 7.27 

Features   5.42 7.69 

Programming   4.78 6.85 

Experience  4.91 7.01 

All Features   4.68 6.57 
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 Better performance is shown by lower MAE and RMSE values. The "All Features" row 

shows the performance of the ensemble method when all input features are used. 

 

[4] CONCLUSION 

 

In this study, we looked into ensemble methods' potential for estimating software development 

effort and assessed how well they performed using real-world data. Stacking outperformed the 

other two ensemble methods in our studies, which demonstrated that ensemble methods can 

greatly increase estimation accuracy compared to single models. The results point to ensemble 

approaches as a potentially successful strategy for increasing software development effort 

estimation, but their success depends on careful model and feature selection. Future studies 

should look into additional ensemble techniques and the effects of other variables on how well 

they function. 
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