
Journal of Analysis and Computation (JAC) 
(An International Peer Reviewed Journal), www.ijaconline.com,  

 

255 
 

   

 

 

SOLUTION OF HEAT EQUATION BY FOURIER-BESSEL 

TRANSFORM 

Dr. Sarita Poonia1, Dr Tripati Gupta2   , Dr Ruchi Mathur3    

1,2Associate Professor, 3Dean First Year Jaipur Engineering College and Research Centre Jaipur, India  

 

ABSTRACT 
 

In this paper we have discussed certain boundary value problem of heat the cylindrical shell solve by 

fourier-bessel transform and also discussed temperature distribution in a cylindrical shell with heat source 

inside the cylinder. Measuring and finding the distribution and variation is one of the significant purposes 

of presenting different methods for solving heat equation. 
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[1] Introduction: 

In this article, the heat equation problem of a sector of a finite hollow cylinder 

is studied as an exact solution approach. The governing equations are in the form of 

non-homogeneous partial differential equation (PDE) with non-homogeneous boundary 

conditions. In order to solve the PDE equation, generalized fourier-bessel, periodic 

Fourier, Fourier and Laplace transforms are applied. The results are shown that this 

approach is suitable and systematic for solving heat equation in cylindrical coordinate. 

 Measuring and finding the distribution and variation of heat equation directly is 

not an easy work to do and not possible for some cases and that is one of the significant 

purposes of presenting different methods for solving heat equation. (Hoshan[1]) 

presented a triple integral equation method for solving heat equation . A new kind of 

triple integral was employed to find a solution of non-stationary heat equation in an 
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axis-symmetric cylindrical coordinates under mixed boundary of the first and second 

kind conditions. (Kayhani et al[2]). introduced a general analytical solution for heat 

equation in cylindrical multilayer composite laminates . In the article, the direction of 

fiber was able to change between the layers. The  boundary condition was considered 

linear and the method was introduced suitable for boundary conditions consisting of 

conduction, convection and radiation. (Cossali [3]) expressed an analytical solution of 

the steady periodic heat equation in a solid homogenous finite cylinder via Fourier 

transform, with the sole restriction of uniformity on the lateral surface and radial 

symmetry on the bases . A harmonic heating, as an example, introduced with simulation 

results.( Matysiak et al.[4]) expressed the problem of transient heat equation in a from-

time-to-time arranged in layers consisting of a large number of interchanging concentric 

cylinders . The cylinders have a great quantity of circular homogenous isotropic rigid 

sectors. (Sommers and Jacobi[5]) presented an exact solution to steady heat equation in 

a two-dimensional hollow on a one-dimensional fin .  

The fin efficiency of a high thermal conductivity was discussed. The exact 

solution was obtained by separation of variables method. (Jabbari et al.[6]) explained 

an analytical solution to a problem of one-dimensional moving heat source in a hollow 

FGM cylinder . Mechanical and thermal stresses were considered and the material in 

the case, varied continuously across the thickness. The method of solution was direct 

and used Bessel function. (Atefi and Talaee[7]) The separation of variable method was 

applied for solving the time-independent boundary condition and the Duhamel integral 

was used to apply for time dependent part. 

In this paper, in order to solve the problem as an exact method, generalized fourier-

bessel transform is used. fourier-bessel is a transformation for solving problems 

consisting of cylindrical coordinates, but not the hollow one.( Eldabe et al.[8]) 

introduced an extension of the fourier-bessel transform which was capable of solving 

problems in hollow cylindrical coordinates, heat equation or wave with mixed boundary 

values .( Povstenko[9]) expressed the radial heat in a cylinder via Laplace and  fourier-

bessel transform . (Akhtar[10]) presented exact solutions for rotational flow of a 

generalized Maxwell fluid between two circular cylinders .  

In order to find the exact solution Laplace and fourier-bessel transforms were 

employed. (Fetecau et al.[11]) introduced exact solutions for the flow of a viscoelastic 

fluid induced by a circular cylinder subject to a time dependent shear stress via fourier-

bessel transform . (Yu et al.[12]) expressed general temperature computational method 

of linear heat equation for multilayer cylinder . 

 

[2] Theorem 

Let us consider a cylinder of radial 𝑝, 𝑞 𝑎𝑛𝑑  ℎ𝑒𝑖𝑔ℎ𝑡  𝑠 and symmetrical along 

𝑥 − 𝑎𝑥𝑖𝑠, having a heat source inside which leads axially symmetrical temperature 

distribution. Let (𝑟, 𝜃, 𝑥) be the cylindrical coordinate system and the heat equation 

ISSN 0973-2861Volume XVII, Issue I, Jan-June 2023

http://www.ijaconline.com/


Journal of Analysis and Computation (JAC) 
(An International Peer Reviewed Journal), www.ijaconline.com,  

 

257 
 

symmetrically with respect to 𝑥 − 𝑎𝑥𝑖𝑠. The temperature function 𝜏 is the function of 

space and time. 

The heat equation is given as 

𝜚𝜆𝜏𝑡 = 𝜇∇2𝜑 + 𝜙(𝑟, 𝑥, 𝑡, 𝜏)                          (1)  

Where   𝜙(𝑟, 𝑥, 𝑡, 𝜏)     is a source function. 

The use of substitutions 

𝜙(𝑟, 𝑥, 𝑡, 𝜏)  = 𝜏(𝑟, 𝑥, 𝑡) + 𝜁(𝑡)𝜏(𝑟, 𝑥, 𝑡)    (2)                                                       

𝜓(𝑟, 𝑥, 𝑡) = 𝜏(𝑟, 𝑥, 𝑡)𝑒𝑥𝑝 {− ∫ 𝜖(𝑦)𝑑𝑦
𝑡

0
}   (3)  

The heat equation (1) reduces to 

𝜙𝑡 = 𝜇∇2𝜓 +
𝜓(𝑟,𝑥,𝑡)

𝜚
                                      (4)   

Where   𝜇 =
κ

𝜚𝜆
 ,   𝜇   is diffusivity. 

𝜅  The thermal conductivity,  𝜚 the density and 𝜆 is the specific heat. 

Here we take the composite cylinder of variable density and suppose 

𝜚 = 𝜍  𝑒−𝛼𝑥                                             (5)   

Where 𝜍 and 𝛼 are constant. 

The equation (4) reduce to 

κ [
∂2ψ(r, x, t)

∂r2
+

1

r

∂ψ(r, x, t)

∂r
+

∂2ψ(r, x, t)

∂x2
] +

𝜉(𝑟, 𝑥, 𝑡)

𝜍  𝑒−𝑥𝛼
−

∂ψ(r, x, t)

∂t
= 0       (6) 

                            

𝑢(𝑟, 𝑥, 𝑡)|𝑟=𝑝 = Φ1(𝑥, 𝑡)              (7)                                                                                    

𝑢(𝑟, 𝑥, 𝑡)|𝑟=𝑞 = Φ2(𝑧. 𝑡)              (8)                                                                                    
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𝑢(𝑟, 𝑥, 𝑡)|𝑥=0 = Φ3(𝑡)                 (9)                                                                                       

𝑢(𝑟, 𝑥, 𝑡)|𝑥=𝑠 = Φ4(𝑡)                 (10)                                                                                       

𝑢(𝑟, 𝑥, 𝑡)|𝑡=0 = Υ                         (11)                                                                                            

Where Υ  is constant. 

[3] Solution 

Using fourier-bessel transform between the limit 𝑝 𝑡𝑜 𝑞 with respect to 𝑟, given by 

𝑓(̅𝛽𝑖) = ∫ 𝑟𝑓(𝑟)(𝑗𝑣(𝛽𝑖𝑟)𝑦𝑣(𝑎𝛽𝑖) − 𝑦𝑣(𝛽𝑖𝑟)𝑗𝑣(𝑎𝛽𝑖))𝑑𝑟           (12)
𝑞

𝑝
                                          

With inversion series 

𝑓(𝑟) =
𝜋2

2
∑

𝑓̅(𝛽𝑖)𝑗𝑣
2(𝑏𝛽𝑖)𝛽𝑖

2[𝑗𝑣(𝛽𝑖𝑟)𝑦𝑣(𝑎𝛽𝑖)−𝑦𝑣(𝛽𝑖𝑟)𝑗𝑣(𝑎𝛽𝑖)]

𝑗𝑣
2(𝑎𝛽𝑖)−𝑗𝑣

2(𝑏𝛽𝑖)𝑖                (13)                                             

Where summation over 𝑖 extend over all the positive roots of the equation 

𝑗𝑣(𝛽𝑖𝑎)𝑦𝑣(𝑏𝛽𝑖) − 𝑦𝑣(𝛽𝑖𝑎)𝑗𝑣(𝑏𝛽𝑖) = 0  

and there operation property is 

∫ 𝑟 (
𝜕2𝑓

𝜕𝑟2 +
1

𝑟

𝜕𝑓

𝜕𝑟
−

𝑣2

𝑟2 𝑓)
𝑞

𝑝
(𝑗𝑣(𝛽𝑖𝑟)𝑦𝑣(𝑎𝛽𝑖) − 𝑦𝑣(𝛽𝑖𝑟)𝑗𝑣(𝑎𝛽𝑖))𝑑𝑟                               

=
2

𝜋

𝑗𝑣(𝑎𝛽𝑖)

𝑗𝑣(𝑏𝛽𝑖)
𝑓(𝑏) −

2

𝜋
𝑓(𝑎) − 𝛽𝑖

2𝑓(̅𝛽𝑖)         (14)                                                                         

Now by equation (6), we get 

κ ∫ 𝑟 (
𝜕2𝜓

𝜕𝑟2 +
1

𝑟

𝜕𝜓

𝜕𝑟
) (𝑗0(𝛽𝑖𝑟)𝑦0(𝑎𝛽𝑖) − 𝑦0(𝛽𝑖𝑟)𝑗0(𝑎𝛽𝑖))𝑑𝑟 + κ

𝑞

𝑝

𝜕2𝜓̅(𝛽𝑖,𝑥,𝑡)

𝜕𝑥2 +

𝜙̅(𝛽𝑖,𝑥,𝑡)

𝜍
𝑒𝑥𝛼 −

𝜕𝜓̅(𝛽𝑖,𝑥,𝑡)

𝜕𝑡
= 0                           (15)                                                                                                                

Or  
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κ [
2

𝜋

𝑗0(𝑎𝛽𝑖)

𝑗0(𝑏𝛽𝑖)
𝜓(𝑞, 𝑥, 𝑡) −

2

𝜋
𝜓(𝑝, 𝑥, 𝑡) − 𝛽𝑖

2𝜓̅(𝛽𝑖, 𝑥, 𝑡)] + Κ
𝜕2𝜓̅(𝛽𝑖,𝑥,𝑡)

𝜕𝑥2 +
𝜙̅(𝛽𝑖,𝑥,𝑡)

𝜍
𝑒𝛼𝑥 −

𝜕𝜓̅(𝛽𝑖,𝑥,𝑡)

𝜕𝑡
= 0                            (16)                 

κ [
2

𝜋

𝑗0(𝑎𝛽𝑖)

𝑗0(𝑏𝛽𝑖)
𝜙2(𝑥, 𝑡) −

2

𝜋
𝜙1(𝑥, 𝑡) − 𝛽𝑖

2𝜓̅(𝛽𝑖, 𝑥, 𝑡)] + κ
𝜕2𝜓̅(𝛽𝑖,𝑥,𝑡)

𝜕𝑥2 +
𝜙̅(𝛽𝑖,𝑥,𝑡)

𝜍
𝑒𝛼𝑥 −

𝜕𝜓̅(𝛽𝑖,𝑥,𝑡)

𝜕𝑡
= 0                                                      (17)          

Now using finite Fourier Cosine transforms between the limit 0 𝑡𝑜 𝑠 with respect to 𝑥 

on the above result, be obtain 

∫ [κ [
2

𝜋

𝑗0(𝑎𝛽𝑖)

𝑗0(𝑏𝛽𝑖)
𝜙2(𝑥, 𝑡) −

2

𝜋
𝜙1(𝑥, 𝑡) − 𝛽𝑖

2𝜓̅(𝛽𝑖, 𝑥, 𝑡)] + κ
𝜕2𝜓̅(𝛽𝑖,𝑥,𝑡)

𝜕𝑥2 +
𝜙̅(𝛽𝑖,𝑥,𝑡)

𝜍
𝑒𝛼𝑥 −

𝑠

0

𝜕𝜓̅(𝛽𝑖,𝑥,𝑡)

𝜕𝑡
] cos

𝑚𝜋𝑥

𝑑
𝑑𝑥 = 0  

Or  

κ ∫
𝜕2𝜓̅ 

𝜕𝑥2

s

0
cos

𝑚𝜋𝑥

𝑑
𝑑𝑥 + ∫

𝜙̅(𝛽𝑖,𝑥,𝑡)

𝜍
𝑒𝛼𝑥𝑠

0
cos

𝑚𝜋𝑥

𝑑
𝑑𝑥 + κ [

2

𝜋

𝑗0(𝑎𝛽𝑖)

𝑗0(𝑏𝛽𝑖)
𝜙2
̅̅̅̅ (𝑚, 𝑡) −

2

𝜋
𝜙1
̅̅̅̅ (𝑚, 𝑡) − 𝛽𝑖

2𝜓̅̅(𝛽𝑖, 𝑚, 𝑡)] = 0                 (18)                                                                                                         

On using boundary conditions and operational property, we get 

κ [
𝑚𝜋

𝑠
(−1)𝑚+1𝜙4(𝑡) + 𝜙3(𝑡)] − κ (

𝑚𝜋

𝑠
)

2

𝜓̅̅(𝛽𝑖, 𝑚, 𝑡) + 𝐺̅(𝛽𝑖, 𝑚, 𝑡) −
𝜕𝜓̅̅

𝜕𝑡
+

κ [
2

𝜋

𝑗0(𝑎𝛽𝑖)

𝑗0(𝑏𝛽𝑖)
𝜙2
̅̅̅̅ (𝑚, 𝑡) −

2

𝜋
𝜙1
̅̅̅̅ (𝑚, 𝑡) − 𝛽𝑖

2𝜓̅̅(𝛽𝑖, 𝑚, 𝑡)] = 0            (19)                                                                                      

Where 

𝐺̅(𝛽𝑖, 𝑚, 𝑡) = ∫
𝜙̅(𝛽𝑖,𝑥,𝑡)

𝜍
𝑒𝛼𝑥𝑠

0
cos

𝑚𝜋𝑥

𝑑
𝑑𝑥                (20)                                                                         

Now apply the Laplace transform and apply inverse laplace transform on obtained 

result, further using inverse Fourier cosine transform: 

𝜓̅(𝛽𝑖, 𝑥, 𝑡) =
2

ℎ
∑ 𝜓̅̅(𝛽𝑖, 𝑚, 𝑡) cos

𝑚𝜋𝑥

𝑑
∞
𝑚=1                (21)                                                          
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𝑢̅(𝛽𝑖, 𝑧, 𝑡) =
2

ℎ
∑ [κ

𝑚𝜋

ℎ
(−1)𝑚+1 ∫ 𝜙4(𝑠)𝑒

−((
𝑚𝜋

ℎ
)

2
+𝛽𝑖

2)κ(t−s)
𝑑𝑠 +

𝑡

0
∞
𝑚=1

κ ∫ 𝜙3(𝑠)𝑒
−((

𝑚𝜋

ℎ
)

2
+𝛽𝑖

2)κ(t−s)
𝑑𝑠 + ∫ 𝐺̅(𝛽𝑖, 𝑚, 𝑠)𝑒

−((
𝑚𝜋

ℎ
)

2
+𝛽𝑖

2)κ(t−s)
𝑑𝑠 +

𝑡

0

𝑡

0

κ
2

𝜋

𝑗0(𝑎𝛽𝑖)

𝑗0(𝑏𝛽𝑖)
∫ 𝜙2

̅̅̅̅ (𝑚, 𝑠)𝑒
−((

𝑚𝜋

ℎ
)

2
+𝛽𝑖

2)κ(t−s)
𝑑𝑠 + κ

2

π
∫ 𝑓1̅(𝑚, 𝑠)𝑒

−((
𝑚𝜋

ℎ
)

2
+𝛽𝑖

2)κ(t−s)
𝑑𝑠 +

𝑡

0

𝑡

0

𝜒𝑒
−((

𝑚𝜋

ℎ
)

2
+𝛽𝑖

2)κ(t)
] cos

𝑚𝜋𝑥

𝑑    
       (22)                                 

On using Inversion theorem of Fourier-Bessel transform given by the equation (13), 

we get 

𝑢(𝑟, 𝑥, 𝑡) =
𝜋2

2
∑ [

2

ℎ
∑ [κ

𝑚𝜋

ℎ
(−1)𝑚+1 ∫ 𝜙4(𝑠)𝑒

−((
𝑚𝜋

ℎ
)

2
+𝛽𝑖

2)κ(t−s)
𝑑𝑠 +

𝑡

0
∞
𝑚=1𝑖

κ ∫ 𝜙3(𝑠)𝑒
−((

𝑚𝜋

ℎ
)

2
+𝛽𝑖

2)κ(t−s)
𝑑𝑠 + ∫ 𝐺̅(𝛽𝑖, 𝑚, 𝑠)𝑒

−((
𝑚𝜋

ℎ
)

2
+𝛽𝑖

2)κ(t−s)
𝑑𝑠 +

𝑡

0

𝑡

0

κ
2

𝜋

𝑗0(𝑎𝛽𝑖)

𝑗0(𝑏𝛽𝑖)
∫ 𝜙2

̅̅̅̅ (𝑚, 𝑠)𝑒
−((

𝑚𝜋

ℎ
)

2
+𝛽𝑖

2)κ(t−s)
𝑑𝑠 + κ

2

π
∫ 𝜙1

̅̅̅̅ (𝑚, 𝑠)𝑒
−((

𝑚𝜋

ℎ
)

2
+𝛽𝑖

2)κ(t−s)
𝑑𝑠 +

𝑡

0

𝑡

0

𝜒𝑒
−((

𝑚𝜋

ℎ
)

2
+𝛽𝑖

2)κ(t)
] cos

𝑚𝜋𝑧

ℎ
]

𝑗𝑣
2(𝑏𝛽𝑖)𝛽𝑖

2[𝑗𝑣(𝛽𝑖𝑟)𝑦𝑣(𝑎𝛽𝑖)−𝑦𝑣(𝛽𝑖𝑟)𝑗𝑣(𝑎𝛽𝑖)]

𝑗𝑣
2(𝑎𝛽𝑖)−𝑗𝑣

2(𝑏𝛽𝑖)
          (23)                          

This gives temperature distribution in cylindrical shell. 
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