GRAPH EQUATIONS FOR LINE GRAPHS, MIDDLE GRAPHS, SEMI-SPLITTING BLOCK GRAPHS AND SEMILINE SPLITING BLOCK GRAPHS

Dr.Sangeeta Bhat
Assistant Professor, Department of Mathematics and statistics, K.J.Somaiya college of Arts and commerce (Autonomous),Vidyavihar,Mumbai,400077,INDIA

Abstract

Graph equations are those in which the unknowns are graphs. During the past fifty years, the development in these areas has emerged as one of the significant branches in Graph Theory. Let L(G) and $\mathbf{M}(\mathbf{G})$ denote the line graph and middle graph respectively. In this paper, we solve the graph equations $L(\mathbf{G}) \cong \mathrm{S}_{\mathbf{B}}(\mathbf{H}), \overline{\mathrm{L}(\mathrm{G})} \cong \mathrm{S}_{\mathbf{B}}(\mathbf{H}), \mathbf{M}(\mathbf{G}) \cong \mathrm{S}_{\mathrm{B}}(\mathbf{H}), \overline{\mathrm{M}(\mathrm{G})} \cong \mathrm{S}_{\mathrm{B}}(\mathbf{H}), \mathrm{L}(\mathbf{G}) \cong \mathrm{BLs}(\mathbf{H}), \overline{\mathrm{L}(\mathrm{G})} \cong$ $\operatorname{BLs}(\mathbf{H}), \quad \mathbf{M}(\mathbf{G}) \cong \mathbf{B L s}(\mathbf{H}), \overline{\mathrm{M}(\mathrm{G})} \cong \mathbf{B L s}(\mathbf{H})$.

The symbol \cong stands for isomorphism between two graphs.

Keywords: Line graph, middle graph, Semi splitting block graphs ,semi line splitting block graphs.Mathematics subject classification: 05C99

[1] INTRODUCTION

We require the following definitions.
A graph G is called a block it has more than one vertex, is connected and has no cutvertex. A block of a graph G is a maximal subgraph of G which is itself a block.

If $B=\left\{u_{1}, u_{2}, \ldots u_{r} ; r \geq 2\right\}$ is a block of G, then we say that vertex u_{1} and block B are incident with each other, as are u_{2} and B so on. Similarly, if B is a block with edge set $\left\{e_{1}, e_{2}\right.$, $\left.\ldots, e_{r} ; r \geq 1\right\}$, there we say that edge e_{i} and block B are incident with each other, $1 \leq i \leq r$.

For a graph G, let $V(G), E(G)$ and $b(G)$ denote its vertex set, edge set and set of blocks of G respectively.

Journal of Analysis and Computation (JAC)

(An International Peer Reviewed Journal), www.ijaconline.com, ISSN 0973-2861
Volume XVI, Issue IV, Jan-June 2022
The open-neighborhood $N(u)$ of a vertex u in $V(G)$ is the set of all vertices adjacent to u.
$N(u)=\{v / u v \in E(G)\}$
For each vertex u_{i} of G, a new vertex u_{i}^{\prime} is taken and the resulting set of vertices is denoted by $\mathrm{V}_{1}(\mathrm{G})$.

The semi-splitting block graph $\mathrm{S}_{\mathrm{B}}(\mathrm{G})$ of a graph G is defined as the graph having vertex set $\mathrm{V}(\mathrm{G}) \cup \mathrm{V}_{1}(\mathrm{G}) \cup \mathrm{b}(\mathrm{G})$ and two vertices are adjacent if they correspond to a adjacent vertices of G or one corresponds to a vertex u_{i}^{\prime} of $V_{1}(G)$ and the other to vertex w_{j} of G and w_{j} is in $N\left(u_{i}\right)$ or one corresponds to a vertex u_{i} of $V(G)$ and the other to a vertex b_{i} of $b(G)$ and u_{i} is in b_{i} (see [7]).

The open-neighborhood $N\left(e_{i}\right)$ of an edge e_{i} in $E(G)$ is the set of edges adjacent to e_{i}.

$$
N\left(e_{i}\right)=\left\{e_{j} / e_{i} \text { and } e_{j} \text { are adjacent in } G\right\} .
$$

For each edge e_{i} of G, a new vertex e_{i}^{\prime} is taken and resulting set of vertices is denoted by $\mathrm{E}_{1}(\mathrm{G})$.

For a graph G , we define the semi-line splitting block graph $\mathrm{BL}_{s}(\mathrm{G})$ of a graph G as the graph having vertex set $\mathrm{E}(\mathrm{G}) \cup \mathrm{E}_{1}(\mathrm{G}) \cup \mathrm{b}(\mathrm{G})$ with two vertices are adjacent if they correspond to adjacent edges of G or one corresponds to an element e_{i}^{\prime} of $E_{1}(G)$ and the other to an element e_{j} of $E(G)$ and e_{j} is in $N\left(e_{i}\right)$ or one corresponds to an edge e_{i} of $E(G)$ and the other to a vertex b_{i} of $b(G)$ and e_{i} lies on b_{i}.

A graph G, its semi-splitting block graph $\mathrm{S}_{\mathrm{B}}(\mathrm{G})$ and semi-line splitting block graph $\mathrm{BL}_{\mathrm{s}}(\mathrm{G})$ are shown in Figure 1.

Sastry and Syam Prasad Raju [8] solved the following graph equations:

$$
\begin{array}{ll}
\mathrm{L}(\mathrm{G}) \cong \mathrm{P}(\mathrm{H}), & \overline{\mathrm{L}(\mathrm{G})} \cong \mathrm{P}(\mathrm{H}) \\
\mathrm{M}(\mathrm{G}) \cong \mathrm{P}(\mathrm{H}), & \overline{\mathrm{M}(\mathrm{G})} \cong \mathrm{P}(\mathrm{H}) \\
\mathrm{P}(\mathrm{G}) \cong \mathrm{T}(\mathrm{H}), & \overline{\mathrm{P}(\mathrm{G})} \cong \mathrm{T}(\mathrm{H}) .
\end{array}
$$

G :

(An International Peer Reviewed Journal), www.ijaconline.com, ISSN 0973-2861 Volume XVI, Issue IV, Jan-June 2022

Figure 1.
In [2], Akka solved graph equations

$$
\begin{aligned}
& \mathrm{L}(\mathrm{G}) \cong \mathrm{e}(H), \quad \mathrm{L}(\mathrm{G}) \cong \mathrm{e}_{\mathrm{v}}(\mathrm{H}) \text { and } \\
& \mathrm{L}(\mathrm{G}) \cong \mathrm{e}_{\mathrm{e}}(\mathrm{H}) .
\end{aligned}
$$

Basavanagoud and Mathad [3] solved the following graph equations.

$$
\begin{aligned}
& \mathrm{L}(\mathrm{G}) \cong \mathrm{S}(\mathrm{H}), \quad \mathrm{J}(\mathrm{G}) \cong \mathrm{S}(\mathrm{H}), \\
& \mathrm{M}(\mathrm{G}) \cong \mathrm{S}(\mathrm{H}), \quad \overline{\mathrm{M}(\mathrm{G}) \cong \mathrm{S}(\mathrm{H})} \\
& \mathrm{L}(\mathrm{G}) \cong \mathrm{Ls}_{s}(\mathrm{H}), \\
& \mathrm{M}(\mathrm{G}) \cong \mathrm{Ls}_{s}(\mathrm{H}), \overline{\mathrm{M}(\mathrm{G})} \cong \mathrm{L}_{s}(\mathrm{H}) \cong \mathrm{Ls}^{(H)}
\end{aligned}
$$

In [5], Cvetkovič and Simič obtained a bibliography of graph equations.
In this paper, we solve the following graph equations:

$$
\begin{aligned}
& \mathrm{L}(\mathrm{G}) \cong \mathrm{S}_{\mathrm{B}}(\mathrm{H}) \quad \overline{\mathrm{L}(\mathrm{G})} \cong \mathrm{S}_{\mathrm{B}}(\mathrm{H}) \\
& \mathrm{M}(\mathrm{G}) \cong \mathrm{S}_{\mathrm{B}}(\mathrm{H}) \overline{\mathrm{M}(\mathrm{G})} \cong \mathrm{S}_{\mathrm{B}}(\mathrm{H})
\end{aligned}
$$

(An International Peer Reviewed Journal), www.ijaconline.com, ISSN 0973-2861
Volume XVI, Issue IV, Jan-June 2022
$\mathrm{L}(\mathrm{G}) \cong \mathrm{BL}_{S}(\mathrm{H})$
$\mathrm{L}(\mathrm{G}) \cong \mathrm{BL}_{S}(\mathrm{H})$
$\mathrm{M}(\mathrm{G}) \cong \operatorname{BLs}(\mathrm{H}) \quad \mathrm{M}(\mathrm{G}) \cong \mathrm{BLs}(\mathrm{H})$.

Beineke has shown in [4] that a graph G is a line graph if and only if G has none of the nine specified graphs $\mathrm{F}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, 9$ as an induced subgraph. We depict here three of the nine graphs which are useful to extract our later results. And also $\overline{\mathrm{F}}_{\mathrm{i}}, i=1,2, \ldots, 9$ is the complement of F_{i}. We depict here three of the nine graphs which are useful to extract our later results. These are $F_{1}=K_{1,3}, F_{5}$ and $F_{3}=K_{5}-x$, where x is any edge of K_{5}.

A graph G^{+}is the endedge graph of a graph G if G^{+}is obtained from G by adjoining an endedge $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}^{\prime}$ at each vertex u_{i} of G (see [1]). Hamada and Yoshimura have proved in [6] that $\mathrm{M}(\mathrm{G}) \cong \mathrm{L}\left(\mathrm{G}^{+}\right)$.

2. THE SOLUTION OF L(G) $\cong \mathbf{S}_{\mathbf{B}}(\mathbf{H})$

Any graph H which is a solution of the above equation, satisfies the following properties:
i) $\quad \mathrm{H}$ must be a line graph, since H is an induced subgraph of $\mathrm{S}_{\mathrm{B}}(\mathrm{H})$.
ii) H does not contain a cut-vertex, since otherwise, F_{1} would be an induced subgraph of $S_{B}(H)$.
iii) $\quad H$ does not contain a cycle $C_{n}, n \geq 3$, since otherwise, F_{1} is an induced subgraph of $\mathrm{S}_{\mathrm{B}}(\mathrm{H})$.
There are two distinct cases to consider.
Case 1. Suppose H is connected. Then H is K_{1} or K_{2}. The corresponding G is $2 \mathrm{~K}_{1}^{+}$or $\mathrm{K}_{1,2}^{+}$ respectively.
Case 2. Suppose H is disconnected. Then H is $n K_{1}, n \geq 2 ; n K_{2}, n \geq 2$ or $n K_{1} \cup n K_{2}, n, m \geq 1$.
For $\mathrm{H}=\mathrm{nK}_{1}, \mathrm{n} \geq 2$, and $\mathrm{G}=2 \mathrm{nK}_{1}^{+}$
For $\mathrm{H}=\mathrm{nK}_{2}, \mathrm{n} \geq 2$, and $\mathrm{G}=\mathrm{nK}_{1,2}^{+}$
For $\mathrm{H}=\mathrm{nK}_{1} \cup \mathrm{mK}_{2}, \mathrm{n}, \mathrm{m} \geq 1$, and $\mathrm{G}=2 \mathrm{nK}_{1}^{+} \cup \mathrm{mK}_{1,2}^{+}$.
From the above discussion, we conclude the following:
THEOREM 2.1 The following pairs (G, H) are all pairs of graphs satisfying the graph equation $L(G) \cong S_{B}(H)$:
($2 \mathrm{nK}_{1}^{+}, \mathrm{nK}_{1}$) $\mathrm{n} \geq 1 ;\left(\mathrm{nK}_{1,2}^{+}, \mathrm{nK}_{2}\right), \mathrm{n} \geq 1$; and
$\left(2 \mathrm{nK}_{1}^{+} \cup \mathrm{mK}_{1,2}^{+}, \mathrm{nK}_{1} \cup \mathrm{mK}_{2}\right), \mathrm{n}, \mathrm{m} \geq 1$.

3. THE SOLUTION OF $\overline{\mathrm{L}(\mathrm{G})} \cong \mathbf{S B}_{\mathbf{B}}(\mathbf{H})$

In this case, H satisfies the following properties:

Journal of Analysis and Computation (JAC)

(An International Peer Reviewed Journal), www.ijaconline.com, ISSN 0973-2861
Volume XVI, Issue IV, Jan-June 2022
i) If H has atleast one edge, then it is connected, since otherwise, $\overline{\mathrm{F}}_{1}$ is an induced subgraph of $\mathrm{S}_{\mathrm{B}}(\mathrm{H})$.
ii) $\quad \mathrm{H}$ does not contain a cut-vertex, since otherwise, $\overline{\mathrm{F}}_{3}$ is an induced subgraph of $\mathrm{S}_{\mathrm{B}}(\mathrm{H})$.
iii) H does not contain two independent vertices which lie on the same block, since otherwise, $\overline{\mathrm{F}}_{5}$ is an induced subgraph of $\mathrm{S}_{\mathrm{B}}(\mathrm{H})$.

From observations (i), (ii) and (iii), we obtain that H is $\mathrm{nK}_{1}, \mathrm{n} \geq 1$ or a block. We consider two distinct cases:

Case 1. If $\mathrm{H}=\mathrm{nK} \mathrm{K}_{1}, \mathrm{n} \geq 1$, then $\mathrm{G}=\mathrm{K}_{1,2 \mathrm{n}}$.
Case 2. If H is a block, then it follows from observation (iii), that $H=K_{n}, n \geq 2$. The corresponding G is $\mathrm{K}_{1, \mathrm{n}}^{+}$.

In this way the graph equation is solved and we obtain the following.
THEOREM 3.1. The following pairs (G, H) are all pairs of graphs satisfying the graph equation $\overline{\mathrm{L}(\mathrm{G})} \cong \mathrm{S}_{\mathrm{B}}(\mathrm{H})$:

$$
\left(\mathrm{K}_{1,2 \mathrm{n}}, \mathrm{nK} \mathrm{~K}_{1}\right), \mathrm{n} \geq 1 ; \text { and }\left(\mathrm{K}_{1, \mathrm{n}}^{+}, \mathrm{K}_{\mathrm{n}}\right), \mathrm{n} \geq 2 .
$$

4. THE SOLUTION OF $M(G) \cong S_{B}(H)$

Theorem 2.1 provides the solutions of the graph equation
$\mathrm{L}(\mathrm{G}) \cong \mathrm{S}_{\mathrm{B}}(\mathrm{H})$. All these solutions are of the form $\left(\mathrm{G}^{+}, \mathrm{H}\right)$. Therefore the solutions of the equation 3 are $\left(2 \mathrm{nK} \mathrm{K}_{1}\right.$, $\left.\mathrm{nK} \mathrm{K}_{1}\right), \mathrm{n} \geq 1 ;\left(\mathrm{nK}_{1,2}, \mathrm{nK}_{2}\right), \mathrm{n} \geq 1$; and $\left(2 \mathrm{nK}_{1} \cup \mathrm{mK}_{1,2}, \mathrm{nK}_{1} \cup \mathrm{mK}_{2}\right), \mathrm{n}, \mathrm{m} \geq 1$.

Now, we state the following result.
THEOREM 4.1. The solutions (G, H) of the graph equation $\mathrm{M}(\mathrm{G}) \cong \mathrm{S}_{\mathrm{B}}(\mathrm{H})$ are $\left(2 \mathrm{nK} \mathrm{K}_{1}\right.$, $\left.\mathrm{nK} K_{1}\right), \mathrm{n} \geq 1 ;\left(\mathrm{nK}_{1,2}, \mathrm{nK} K_{2}\right), \mathrm{n} \geq 1$; and $\quad\left(2 \mathrm{nK}_{1} \cup \mathrm{mK}_{1,2}, \mathrm{nK}_{1} \cup \mathrm{mK}_{2}\right), \mathrm{n}, \mathrm{m} \geq 1$.

5. THE SOLUTION OF $\bar{M}(G) \cong S_{B}(H)$

Theorem 3.1. gives solution of the equation $\overline{\mathrm{L}(\mathrm{G})} \cong \mathrm{S}_{\mathrm{B}}(\mathrm{H})$. Among these solutions $\left(\mathrm{K}_{1, \mathrm{n}}^{+}, \mathrm{K}_{\mathrm{n}}\right), \mathrm{n} \geq 2$ is of the form $\left(\mathrm{G}^{+}, \mathrm{H}\right)$. Therefore, the solution of the equation $\overline{\mathrm{M}(\mathrm{G})} \cong$ $S_{B}(H)$ is $\left(K_{1, n}, K_{n}\right), n \geq 2$.

Thus we obtain the following result.
THEOREM 5.1. There is only one solution $\left(\mathrm{K}_{1, \mathrm{n}}, \mathrm{K}_{\mathrm{n}}\right), \mathrm{n} \geq 2$ of the graph equation $\overline{\mathrm{M}(\mathrm{G})} \cong$ $\mathrm{S}_{\mathrm{B}}(\mathrm{H})$.

6. THE SOLUTION OF $\mathbf{L}(\mathbf{G}) \cong \operatorname{BLs}(H)$

Any graph H which is a solution of the above equation satisfies the following properties:

Journal of Analysis and Computation (JAC)

(An International Peer Reviewed Journal), www.ijaconline.com, ISSN 0973-2861
Volume XVI, Issue IV, Jan-June 2022
i) $\quad \mathrm{H}$ does not contain a cut-vertex, since otherwise, F_{1} is an induced subgraph of $\mathrm{BL}_{s}(\mathrm{H})$.
ii) $\quad \mathrm{H}$ does not contain a cycle $\mathrm{C}_{\mathrm{n}}, \mathrm{n} \geq 3$, since otherwise, F_{1} is an induced subgraph of $\mathrm{BL}_{S}(\mathrm{H})$.

From observations (i) and (ii), it implies that $\Delta(\mathrm{H})=1$. Therefore H is $\mathrm{nK}_{2}, \mathrm{n} \geq 1$. The corresponding G is $\left(\mathrm{n}\left(\mathrm{K}_{1,2} \cup \mathrm{~K}_{2}\right), \mathrm{nK} \mathrm{K}_{2}\right), \mathrm{n} \geq 1$.

Thus we have the following result:
THEOREM 6.1. The solutions (G, H) of the graph equation
$\mathrm{L}(\mathrm{G}) \cong \mathrm{BL}_{S}(\mathrm{H})$ are $\left(\mathrm{n}\left(\mathrm{K}_{1,2} \cup \mathrm{~K}_{2}\right), \mathrm{nK} \mathrm{K}_{2}\right), \mathrm{n} \geq 1$.

7. THE SOLUTION OF $\overline{\operatorname{L(G)}} \cong \operatorname{BLs}(H)$

We first observe that H satisfies the following properties:
i) If H has atleast one edge, then it is connected, since otherwise, $\overline{\mathrm{F}}_{3}$ is an induced subgraph of $\mathrm{BL}_{S}(\mathrm{H})$.
ii) $\quad \mathrm{H}$ does not contain two independent edges, since otherwise, $\overline{\mathrm{F}}_{5}$ is an induced subgraph of $\mathrm{BLs}(\mathrm{H})$.
iii) $\quad \mathrm{H}$ does not contain more than one cut-vertex, since otherwise, $\overline{\mathrm{F}}_{3}$ is an induced subgraph of $\operatorname{BLs}(\mathrm{H})$.
iv) $\quad \mathrm{H}$ does not contain cut-vertex which lies on blocks other than K_{2}, since otherwise, $\overline{\mathrm{F}}_{3}$ is an induced subgraph of $\operatorname{BLs}(\mathrm{H})$.
v) $\quad \mathrm{H}$ does not contain $\mathrm{K}_{1,3}$ as an induced subgraph, since otherwise, $\overline{\mathrm{F}}_{1}$ is an induced subgraph of $\mathrm{BL}_{s}(\mathrm{H})$.

There are two distinct cases to consider.
Case 1. Suppose H has cut-vertex. Then H is $K_{1,2}$ and corresponding G is $K_{3} \bullet K_{3}$.
Case 2. Suppose H has no cut-vertices. Then H is K_{2} or K_{3}. The corresponding G is K_{2}^{+}or $\mathrm{K}_{1,3}^{+}$respectively.

Thus we obtain the following result.
THEOREM 7.1. The following pairs (G, H) are all pairs of graphs satisfying the graph equation $\mathrm{L}(\mathrm{G}) \cong \operatorname{BLs}(\mathrm{H})$:

$$
\left(\mathrm{K}_{3} \bullet \mathrm{~K}_{3}, \mathrm{~K}_{1,2}\right) ;\left(\mathrm{K}_{2}^{+}, \mathrm{K}_{2}\right) ; \text { and }\left(\mathrm{K}_{1,3}^{+}, \mathrm{K}_{3}\right) .
$$

8. THE SOLUTION OF $M(G) \cong \operatorname{BLs}(H)$

Theorem 6.1 gives solutions for the equation $\mathrm{L}(\mathrm{G}) \cong \mathrm{BL}_{S}(\mathrm{H})$. But none of these is of the form $\left(\mathrm{G}^{+}, \mathrm{H}\right)$. Hence, there is no solution of the equation $\mathrm{M}(\mathrm{G}) \cong \mathrm{BLs}(\mathrm{H})$.

Now, we state the following result.
THEOREM 8.1. There is no solution of the graph equation $\mathrm{M}(\mathrm{G}) \cong \operatorname{BLs}_{s}(\mathrm{H})$.

Journal of Analysis and Computation (JAC)

(An International Peer Reviewed Journal), www.ijaconline.com, ISSN 0973-2861 Volume XVI, Issue IV, Jan-June 2022
9. THE SOLUTION OF $\overline{\mathrm{M}(\mathrm{G})} \cong \mathrm{BL}_{\mathrm{s}}(\mathrm{H})$

Theorem 7.1 gives three pair of graphs $\left(\mathrm{K}_{3} \bullet \mathrm{~K}_{3}, \mathrm{~K}_{1,2}\right) ;\left(\mathrm{K}_{2}^{+}, \mathrm{K}_{2}\right)$; and $\left(\mathrm{K}_{1,3}^{+}, \mathrm{K}_{3}\right)$ which are the solutions of the equation $\overline{\mathrm{L}(\mathrm{G})} \cong \mathrm{BLs}(\mathrm{H})$. Among these pairs, $\left(\mathrm{K}_{2}^{+}, \mathrm{K}_{2}\right)$ and $\left(\mathrm{K}_{1,3}^{+}, \mathrm{K}_{3}\right)$ are of the form $\left(\mathrm{G}^{+}, \mathrm{H}\right)$. Therefore, the solution of the equation $\overline{\mathrm{M}(\mathrm{G})} \cong \mathrm{BL}(\mathrm{H})$ are $\left(\mathrm{K}_{2}, \mathrm{~K}_{2}\right)$ and $\left(\mathrm{K}_{1,3}\right.$, K_{3}).

Now, we state the following result.
 and $\left(K_{1,3}, K_{3}\right)$.

Journal of Analysis and Computation (JAC)
 (An International Peer Reviewed Journal), www.ijaconline.com, ISSN 0973-2861
 Volume XVI, Issue IV, Jan-June 2022

REFERENCES

[1]. T. Akiyama, T. Hamada and I. Yoshimura, Graph equations for line graphs, total graphs and middle graphs.TRU Math. 12 (2) (1976).
[2]. D. G. Akka, Graph equations for line graphs, entire graphs and semientire graphs. J. of Math. and Phy. Sci., 19(6) (1985), 511-518.
[3]. B. Basavanagoud and Veena N. Mathad, Graph equations for line graphs, jump graphs, middle graphs, splitting graphs and line splitting graphs. Preprint.
[4]. L. W. Beineke, Derived graphs and digraphs, Beiträge zur Graphentheorie, (Manebach 1967), 17-24
[5]. D. M. Cvetković and S. K. Simić, , A bibliography of graph equations, J. of Graph Theory, 3 (1979), 311324.
[6]. T Hamada and I. Yoshimura, Traversability and connectivity of the middle graph of a graph. Discrete Math. 14 (1976), 247-256
[7]. V. R. Kulli and K. M. Niranjan, The semi-splitting block graph of a graph. Preprint
[8]. D. V. S. Sastry and B. Syam Prasad Raju, Graph equations for line graphs, total graphs, middle graphs and quasi-total graphs, Discrete Math., 48(1984), 113-119.

