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ABSTRACT:

The concept of imaginary numbers, particularly encapsulated by unit i, represents a pivotal advancement
in mathematical thought, challenging traditional notions of numerical reality. Initially perceived as a
paradoxical entity due to its definition as the square root of -1. This paper delves into the origins and
evolution of ‘i’, tracing its roots from the early musings of mathematicians grappling with unsolvable
equations to its formal integration within the framework of complex numbers. The mathematical
community's acceptance of ‘i’ as a legitimate and practical entity marked a paradigm shift, enabling
solutions to previously intractable problems in fields such as electrical engineering, quantum mechanics,
and signal processing.
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[1] INTRODUCTION: IMAGINARY NUMBERS

A Greek mathematician called Hero of Alexandria first invented imaginary numbers. Later in
1572, an Italian mathematician Gerolamo Cardano developed the rules for multiplying
imaginary numbers. These numbers help find the square roots of negative numbers. Imaginary
numbers are numbers that result in a negative number when squared. They are also defined as
the square root of negative numbers. An imaginary number is the product of a non-zero real
number and the imaginary unit "'i** (which is also known as "'iota""),

where i =V(-1) (or) i2= -1
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/ the cycle continues
i°=i
/Powors

of

lota /

e Multiplying Imaginary Numbers

We multiply the imaginary numbers just like how we multiply the terms in algebra. Here, we
may have to use the rule of exponents am x an = am+n. But here, we have to take care of the
fact that i2 = -1. Here are some examples.

2i x 3i = 6i2 = 6(-1) = -6
3i2 x -5i3 = -15i5 = -15 (i2)2 i = -15 (-1)2 i = -15i

Simplifying the powers of iota may be difficult. Here are some rules that make the process of
finding powers of "i" easier while multiplying complex numbers.

idk =1

idk+1=1
i4k+2 = -1
i4k+3 = -i

For this complex number, a + jb is called the rectangular form, while r 26 is called the polar
form. If a complex number is given in polar form, its rectangular form can be found:

a=rcost
b=rsinf

[2] Complex Numbers in Electrical Engineering
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Working with Complex Impedance

Voltage and current are always real, observable quantities. In a linear A/C circuit
with a sinusoidal stimulus, they will always have a form like V' (z) = V| cos(wt + ¢). The
algebraic complexities come in when we introduce capacitors and inductors, which
produce +90° changes in phase. Adding sines and cosines with differing phases is
algebraically painful, requiring expertise with trig identities. However, if the circuit is
described by linear differential equations, then we can simplify life by adding an
imaginary part to the voltage or current:

V(t)=Vy cos(wt +@)+ j-Vi sin(wt +9) = Voej'(a”“ﬂ)

M

50

Figure 3. LRC series circuit.
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with the understanding that the observed voltage 1s just the real part of this expression.
Now, when you do your circuit analysis you get to deal with the simple properties of the
exponential function instead of nasty trig identities. When done, just take the real part of
the final result, and that 1s your answer. As you will see, what this procedure will do for
you is turn a set of linear differential equations into a set of linear algebraic equations.’

This works only because the circuit is a linear circuit, described by linear
differential equations. Since linear equations do not involve any squares, square roots,
and so forth of the voltage or current, or multiplication of one voltage or current by
another, the real and imaginary parts don’t get mixed up. Take a look at the equations in
the previous section. The addition and subtraction equations do not mix up the real and
imaginary parts, but the equations for multiplication and division do. Multiplying a
complex number by a real constant also obviously does not mix up the real and imaginary
parts. Essentially, a linear equation 1s one that will not mix up the real and 1imaginary
parts of the voltages and currents. From a practical standpoint, a linear circuit is one that
includes only passive components (resistors, capacitors, and inductors) plus voltage
and/or current sources. No diodes, transistors, vacuum tubes, etc. are allowed.

It 1s perhaps worth mentioning here that the same formalism, with the same
advantages of using complex numbers, works i mechanics when dealing with small,
harmonic oscillations of mechanical systems.

The recipe for obtaining the steady-state’ harmonic response of a linear circuit is
straightforward. Write each non-static voltage or current source as a complex number:

Vgem or Igem
where the phase ¢ can be taken to be zero if there 1s only one source. Otherwise the

relative phases of the sources must be taken into account. Then treat each passive
component as an impedance
Resistor: Z =R

Capacitor: Z = L
C

J
Inductor: Z = jwL
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where in general the impedance relates the voltage across a component to the current
passing through the component according to a generalization of Ohm’s law:
=1z

Use Kirchhoff’s laws to write a set of linear equations for the currents and voltage
in the circuit, exactly as you would do for a circuit made up of batteries and resistors.
The only difference 1s that some of the “resistances” are imaginary, so what you end up
with 1s a set of complex linear equations. Solve the equations for the currents and
voltages. This 1s tedious to do by hand, but keep in mind that a computer can solve an
amazingly large set of complex linear equations in an instant, using standard “canned”
programs. Many scientific calculators also have built-in functions for solving sets of
linear complex equations. Finally, express the resulting voltages and/or currents in polar
form, from which you can read off the amplitude and phase of each current or voltage.

As an example not included in Horowitz and Hill, let’s analyze the standard senes
LRC circuit (Figure 3) which has a voltage oscillator 1n series with a resistor, capacitor,
and inductor. The differential equation for this circuit follows from adding up the voltage
changes around the loop:

el - -1 -2,
d C

where I’fﬂf?“'li ™ s the driving voltage, expressed as a complex quantity as suggested

above, with an assumed phase ¢=0. Using Q:Ifdt, we get an equation for the

current:

L£+l_[1df+RI=Vnef”_
dt C

This 1s readily solved by making the substitution / = I.DE'!- “’”"ﬁ}, which turns the
differential equation into an algebraic equation:

1 .
[jaL+F+R]-IuEJ¢ =7j.
The quantity in parentheses 1s exactly the “impedance™ that one would get by using the
impedance rules listed above for resistors, capacitors, and inductors, plus the rule that
impedances 1n series simply add up. So, from now on do not bother to write down the
differential equation! Just assume the rules for complex impedance and immediately

write down the algebraic equation.
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Eigure 4. Resonance curves for an LRC series circuit, with R=10 Ohms, C=2PF, and
L=4mH

To analyze the series LRC circuit without writing any differential equation, we
start with “Ohm’s Law™ for a reactive circuit:

{ =L—D with Z=R+;+j(a{,_
Z JjoC
To do the division, I convert the impedance to polar form:

2
Z=Rsj|ob--L)=|R?+[aL-—1] .e/
al’ o

1
ol —— 2 2
. aC @ = ax) 1 R
with = arctan| ————— | = arctan| ——— | and @, = and y =—
& R ( o =T T
So the current 1s given by
.
7 : ) R :
2 2
\/R2+(QJL—LJ y2m2+((92—(%2}_
a
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2 2
with ¢ = —arcmn{u] for the phase of the current.
Yo

This result exhibits a resonance, with ey, the natural frequency of the circuit,
being the frequency at which the impedance 1s minimum (and equal simply to R) and the
current 1s maximum, with a phase shift of zero relative to the voltage. Also, » 1s a

measure of the amount of damping in the circuit and, thus, the width of the resonance
curve. This resonance behavior 1s illustrated in Figure 4.

Analyzing a More Complex Linear Circuit

A more complicated looking example i1s shown in Figure 5, where the driving
voltage is the real part of 1ir)=10¢'"" volts, with angular frequency @ = 10* radians/s.
The impedance of the inductor 1s jel =4; ohms, and the impedance of the capacitor 1s
If jeo” =—0.25; ohms. The objective 1s to find all the currents in the circuit and the
equivalent impedance of the overall circuit, as seen by the voltage source. In this case
there are 4 loops, so we will have 4 loop equations and 3 node equations. This goes
beyond the complexity that you will see in homework or on any exam, but [ throw 1t in as
a random demonstration that the analysis 1s straightforward and can be formulated 1n a
manner that makes a solution by computer fairly easy.

[ prefer to work with the concept of “loop currents,” in order to avoid having to
write down the node equations. To understand this concept, look at the circuit as redrawn
in Figure 6. The four loops are evident, and each 1s associated with a loop current. The
current through the capacitor 1s clearly iy, the current through the voltage source 1s i,
and the current through the 2-ochm resistor 1s i;. However, each of the other 4
components has two currents flowing through i1t. For example, the current flowing
upward through the inductor 1s iy —i,, and the current flowing downward through the
leftmost resistor 1s i —i>. Now, let’s apply Kirchhotf™s loop law to loop #1, starting at
the lower left corner and proceeding upwards through the voltage source, in the direction
of loop current §j:

10—=(i; —iz)-1=0

400uF

142 1€
MV S AA

v A 210 oamy 320

Figure 5. Example of a 4-loop linear circuit.
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Figure 6. The circuit redrawn with loop currents.

Do the same for loop #2, starting in the lower left hand corner and proceeding upwards
through the 1-ohm resistor, in the direction of the loop current i :
—(ia —iy)-1=(iz —ig)-1-(iz —i3)-4j =0
The other two equations, for loops 3 and 4 respectively, are
—(iy=ip)-4j-li3—ig)-1-i3-2=0
ig-025j—(igy —i3)-1-(ig —i2)-1=0
Such equations are easiest to deal with 1if organized 1n matrix notation:

1 -1 0 0 i) (10
1 -2-4j 4 ! ihl |o
0 4 -3-4j T P
0 1 1 -2+025/) lig) Lo

Solving these equations by hand would be tedious and annoying, but doing 1t by
computer with a program like Mathcad, Mathematica, or Matlab couldn’t be easier. For
example, in Mathcad let’s call the matrix Z | so the equation looks like

Z-1=V
Fill the 16 complex values into the matrix Z and the 4 values into V', and then type
1=z7'.v

and you're done!” The result is

15.457-1.787

5.457-1.787;

4990 +0.652

5.213+0.084;

Here 1s how to interpret the result. For example, the current §; can be written in

—j0.037x

polar form as i} = 15.56e , 0 the current as a function of time is

i (1) =15.56-cos(wt - 0.0377).
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Current and Voltage of the Source
20

10
Ip(t)

Volh o

=10

-20
-a10* 216t ¢ ) 110*  2a0* 3.106°*

t(s)

Figure 7. Plots of the voltage and current of the voltage supply as a function of time for a

supply frequency of 10 radians/s. The current lags behind the voltage by several
degrees.

That is, the current passing through the source lags behind the voltage by 00377
radians, or about 6.7 degrees. Figure 7 shows how the current and voltage would look if
displayed on an oscilloscope. The equivalent impedance of the circuit, as seen by the
source, can be calculated from the ratio of the voltage and current of the source:
Zeq =L= 10 +j0.0377
ii 1556
Thus at this frequency, the circuit looks slightly inductive to the source.

CONCLUSION

In summary, complex numbers provide a straightforward and powerful mathematical
framework for analyzing linear circuits, enabling engineers to predict and optimize circuit
behavior accurately. This understanding is foundational for advanced studies and practical
applications in electrical engineering and physics.
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